Unterschiede zwischen den Revisionen 51 und 65 (über 14 Versionen hinweg)
Revision 51 vom 08.06.2009 22:01
Größe: 5969
Autor: MarkG
Kommentar:
Revision 65 vom 19.06.2009 14:15
Größe: 7510
Autor: MarkG
Kommentar:
Gelöschter Text ist auf diese Art markiert. Hinzugefügter Text ist auf diese Art markiert.
Zeile 4: Zeile 4:
Microbee is a four-rotor model helicopter based on the Mikrokopter design. It's equipped with the latest  electronics hardware and is capable of photography, vision guided autonomous navigation as well as normal radio-control flying by a human being. An advanced vision recognition system is currently being developed based on the high performance, low power OMAP3 platform.
Microbee is a four-rotor model helicopter based on the [http://www.mikrokopter.de/ucwiki/en/MikroKopter Mikrokopter] design. It's equipped with the latest electronics hardware and is capable of photography, vision guided autonomous navigation as well as normal radio-control flying by a human being. An advanced vision recognition system is currently being developed based on the high performance, low power Texas Instruments OMAP3 platform.
Zeile 8: Zeile 7:
Zeile 26: Zeile 26:
- [http:www.freescale.com/files/sensors/doc/data_sheet/MPX4115A.pdf MPX 4115A] pressure sensor for altitude estimation. - [http:www.freescale.com/files/sensors/doc/data_sheet/MPX4115A.pdf MPX-4115A] barometric pressure sensor for altitude estimation.
Zeile 34: Zeile 34:
- [http://www.radiotronix.com Radiotronix] WI232EUR 868 MHz radio modem with 1/4 wave dipole & yagi antennas. - [http://www.radiotronix.com Radiotronix] WI232EUR 868 MHz radio modem with 1/2 wave dipole & yagi antennas. Note that the 1/2 wave dipole antenna works best on-board as it doesn't require a ground-plane and has a reasonably omnidirectional radiation pattern. For long distance communication (up to 4km), a yagi antenna is used at the ground station.
Zeile 38: Zeile 38:
- [http://www.maxbotix.com/ Maxbotix] LV-EZ1 Ultrasonic Range Finder. - [http://www.maxbotix.com/ Maxbotix] LV-EZ1 ultrasonic range finder.
Zeile 42: Zeile 42:
- The advanced computer vision system is being prototyped on a [http://beagleboard.org/ BeagleBoard]. This single board Linux computer is from the latest generation of low-power embedded processing platforms. Basic computer vision algorithms have been implemented on it. The source code is being optimised to off-load the number-crunching to the DSP & GPU processors to achieve real-time vision performance.
    * 600 MHz ARM Cortex-A8 with NEON SIMD Co-processor
    * 430 MHz TMS320C64x+ DSP (fixed point, six parallel vector units)
    * 110 MHz SGX GPU
As the Beagle Board allows connection of keyboard, mouse, and display, it hosts the development toolchain and allows direct coding, compiling, and executing the embedded computer vision algorithms.
- An advanced computer vision system is being prototyped on a [http://beagleboard.org/ BeagleBoard] single board Linux computer. It's a latest generation, low-power, embedded processing platform. Basic computer vision algorithms have been implemented on it. The source code is being optimised to off-load the number-crunching to the DSP & GPU processors to achieve real-time vision performance.

* 600 MHz ARM Cortex-A8 with NEON SIMD Co-processor
 * 430 MHz TMS320C64x+ DSP (fixed point, six parallel vector units)
 * 110 MHz SGX GPU
As the Beagle Board allows connection of keyboard, mouse, and display, it hosts the development toolchain and allows direct coding, compiling, and executing the embedded computer vision algorithms. Once stable, the smaller and lighter [http://www.gumstix.com/ Gumstix] Overo Water embedded module will be used on-board. Here is a TI tutorial on [http://learningmedia.ti.com/public/media/DSP8-58/01/21972/index.html Optimzing Your C code for Performance on TMS320C6000 DSPs].
Zeile 71: Zeile 72:
- [http://www.sparkfun.com/datasheets/Sensors/Imaging/CM-26N.pdf CM-26N/P] CMOS colour camera module  - [http://www.sparkfun.com/datasheets/Sensors/Imaging/CM-26N.pdf CM-26N/P] CMOS colour camera module
Zeile 77: Zeile 78:
= Internal Software =
- [http://svn.mikrokopter.de/mikrowebsvn/filedetails.php?repname=FlightCtrl&path=/tags/V0.74d/Hex-Files/Flight-Ctrl_MEGA644_V0_74d.hex Flight-Ctrl 0.74d]
= On-board Software =
- [http://svn.mikrokopter.de/mikrowebsvn/filedetails.php?repname=FlightCtrl&path=/tags/V0.74d/Hex-Files/Flight-Ctrl_MEGA644_V0_74d.hex Flight-Ctrl 0.74d] modified to control height with a [http://www.maxbotix.com/ Maxbotix] LV-EZ1 ultrasonic range finder (instead of the MPX-4115A barometric pressure sensor).
Zeile 82: Zeile 83:
- In development: Embedded computer vision algorithms running on the [http://www.angstrom-distribution.org/ Ångström] embedded Linux operating system.
Zeile 83: Zeile 85:
= External Software = = Ground Station Software =
Zeile 90: Zeile 92:
- [http://opencv.willowgarage.com/wiki OpenCV]  Based on the work of [http://github.com/nzjrs John Stowers]. - [http://opencv.willowgarage.com/wiki OpenCV] Based on the work of [http://github.com/nzjrs John Stowers].
Zeile 92: Zeile 94:
- [http://www.roborealm.com RoboRealm]. Was freely available but now only a demo :-(  - [http://www.roborealm.com RoboRealm]. Was freely available but now only a demo :(
Zeile 100: Zeile 102:

= Home =
= Geographical Location =
Zeile 104: Zeile 105:
attachment:microbee_park.jpg
Zeile 105: Zeile 107:
= Photo =
attachment:microbee_park.jpg
= Motodrone 2009 =
The microbee competed in the [http://www.motodrone.de/en/index.html Motordrone Challenge] in June 2009 and finished in 2nd place. Here are some photos of microbee at the event:

attachment:motodrone09.jpg Finowfurt ex-Russian airbase attachment:motodrone09_camp.jpg Campsite
attachment:motodrone09_workshop.jpg Last minute adjustments (inside an aircraft bunker)
attachment:motodrone09_challenge1.jpg Task 1 - indoor track red circle
attachment:motodrone09_challenge3.jpg Task 1 - takeoff!
attachment:motodrone09_challenge2.jpg Ground station software
attachment:motodrone09_challenge4.jpg Task 2 - outdoor track
  • attachment:Microbee_logo2.gif

Microbee is a four-rotor model helicopter based on the [http://www.mikrokopter.de/ucwiki/en/MikroKopter Mikrokopter] design. It's equipped with the latest electronics hardware and is capable of photography, vision guided autonomous navigation as well as normal radio-control flying by a human being. An advanced vision recognition system is currently being developed based on the high performance, low power Texas Instruments OMAP3 platform.

All hardware & electronics is freely available in shops. The software is Open Source. Nothing is commercially-restricted.

Physical Characteristics

- Width: 40 cm (between opposite motors). 66 cm (propeller tip-to-tip).

- Height: 12 cm. (28 cm with [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=77&products_id=272&zenid=ad3b305fb0d23fb5d4c519cc63a37231 HiLander]).

- Weight: 700 grams (without battery).

- Flight Duration: ~15 minutes (with 167g/2200 mAh Lipo battery).

Electronics

- [:en/FlightCtrl:FlightCtrl] v1.3 upgraded to v2.0 with retrofit of 2 x ADXRS610 gyros (nick & roll), 1 ADXRS150 Gyro (yaw), 1 x 4017 (servo control), 2 x RECOM R-785.0-1.0 SIP3 switching regulators, 2uF capacitors on LIS344AL accelerometer outputs, R5 of red LED connected to ground. Murata ENC-03R gyros removed.

- [:en/NaviCtrl:NaviCtrl] V1.1 navigation controller.

- [:en/MK3Mag:MK3Mag] compass module for direction detection.

- [:en/MKGPS:MKGPS] GPS receiver for navigation.

- [http:www.freescale.com/files/sensors/doc/data_sheet/MPX4115A.pdf MPX-4115A] barometric pressure sensor for altitude estimation.

- [http://www.spektrumrc.com/ Spektrum] 2.4 GHz R/C receiver.

- [http://www.schulze-elektronik-gmbh.de/alpha-e.htm Schulze alpha 5.35] 35 MHz R/C receiver (modified with PPM output).

- [http://shop.graupner.de/webuerp/servlet/AI?ARTN=4745 Graupner/JR MX-12s] 35 MHz R/C transmitter modified with 3 extra channels (1x 3-position switch, 2x trimpots) and Spektrum DM9 2.4 GHz module installed. Switchable between 35 MHz & 2.4 GHz.

- [http://www.radiotronix.com Radiotronix] WI232EUR 868 MHz radio modem with 1/2 wave dipole & yagi antennas. Note that the 1/2 wave dipole antenna works best on-board as it doesn't require a ground-plane and has a reasonably omnidirectional radiation pattern. For long distance communication (up to 4km), a yagi antenna is used at the ground station.

- [http://www.firmtech.co.kr/01pro/main_eng.php?index=100&proinfo=13 FB155BC] Class-2 Bluetooth module]

- [http://www.maxbotix.com/ Maxbotix] LV-EZ1 ultrasonic range finder.

- [http://en.wikipedia.org/wiki/Lithium-ion_polymer_battery LIPO] batteries 2200 mAh & 4400 mAh.

- An advanced computer vision system is being prototyped on a [http://beagleboard.org/ BeagleBoard] single board Linux computer. It's a latest generation, low-power, embedded processing platform. Basic computer vision algorithms have been implemented on it. The source code is being optimised to off-load the number-crunching to the DSP & GPU processors to achieve real-time vision performance.

  • 600 MHz ARM Cortex-A8 with NEON SIMD Co-processor
  • 430 MHz TMS320C64x+ DSP (fixed point, six parallel vector units)
  • 110 MHz SGX GPU

As the Beagle Board allows connection of keyboard, mouse, and display, it hosts the development toolchain and allows direct coding, compiling, and executing the embedded computer vision algorithms. Once stable, the smaller and lighter [http://www.gumstix.com/ Gumstix] Overo Water embedded module will be used on-board. Here is a TI tutorial on [http://learningmedia.ti.com/public/media/DSP8-58/01/21972/index.html Optimzing Your C code for Performance on TMS320C6000 DSPs].

Frame

- [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=77&products_id=286&zenid=ad3b305fb0d23fb5d4c519cc63a37231 MK40] 40cm frame with anodized bars

- [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=88&products_id=317&zenid=ad3b305fb0d23fb5d4c519cc63a37231 Circular level 10mm]

- [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=77&products_id=272&zenid=ad3b305fb0d23fb5d4c519cc63a37231 MK HiLander]

- [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=77&products_id=301&zenid=ad3b305fb0d23fb5d4c519cc63a37231 MK HiSight Small]

- [http://www.canon.com Canon] IXUS-80IS camera

Motors

4x [https://www.mikrocontroller.com/index.php?main_page=product_info&cPath=73&products_id=199&zenid=ad3b305fb0d23fb5d4c519cc63a37231 Roxxy 2824-34] Brushless motors

4x [:en/BrushlessCtrl:BL-Ctrl] V1.2 brushless motor controllers

4x EPP1045 Propellers

Video

- [http://www.airwave.com.tw/58GHz-Analog-RF-module.html Airwave AWM683TX] 5.8 GHz 100mW video transmitter with 3.2 dBi WiniZen W6E–UPW–10 dipole antenna

- [http://www.airwave.com.tw/58GHz-Analog-RF-module.html Airwave AWM682RX] 5.8 GHz video receiver with 7 dBi AWM-ANT58-PCB patch antenna

- [http://www.sparkfun.com/datasheets/Sensors/Imaging/CM-26N.pdf CM-26N/P] CMOS colour camera module

- [http://www.optics-online.com/dsl_fisheye.asp Sunex] DSL209A or DSL215B fisheye lens

attachment:microbee_vision.JPG

On-board Software

- [http://svn.mikrokopter.de/mikrowebsvn/filedetails.php?repname=FlightCtrl&path=/tags/V0.74d/Hex-Files/Flight-Ctrl_MEGA644_V0_74d.hex Flight-Ctrl 0.74d] modified to control height with a [http://www.maxbotix.com/ Maxbotix] LV-EZ1 ultrasonic range finder (instead of the MPX-4115A barometric pressure sensor).

- [http://svn.mikrokopter.de/mikrowebsvn/filedetails.php?repname=NaviCtrl&path=/tags/V0.15c/Hex-Files/Navi-Ctrl_STR9_V0_15c.hex Navi-Ctrl 0.15c]

- In development: Embedded computer vision algorithms running on the [http://www.angstrom-distribution.org/ Ångström] embedded Linux operating system.

Ground Station Software

- [:en/MikroKopter-Tool:MikroKopter-Tool].

- [http://mikrocontroller.cco-ev.de/mikrosvn/Projects/MissionCockpit Mission Cockpit] and [http://mikrocontroller.cco-ev.de/mikrosvn/Projects/MissionCockpit/branches/V0.2.0_EN/ English version].

- [http://www.ubuntu.com/ Ubuntu 9.04].

- [http://opencv.willowgarage.com/wiki OpenCV] Based on the work of [http://github.com/nzjrs John Stowers].

- [http://www.roborealm.com RoboRealm]. Was freely available but now only a demo :(

- Some parts of the [http://www.mikrokopter.de/ucwiki/en/Riddim Riddim] code.

- Some parts of the [http://www.mikrokopter.de/ucwiki/en/MoteCtrl MoteCtrl] code.

- [http://liblo.sourceforge.net/ liblo OSC] for fast & efficient interprocess communication.

Geographical Location

[http://map.speedyweb.at/fullscreen.php?link=MarkG Geneva, Switzerland]

attachment:microbee_park.jpg

Motodrone 2009

The microbee competed in the [http://www.motodrone.de/en/index.html Motordrone Challenge] in June 2009 and finished in 2nd place. Here are some photos of microbee at the event:

attachment:motodrone09.jpg Finowfurt ex-Russian airbase attachment:motodrone09_camp.jpg Campsite attachment:motodrone09_workshop.jpg Last minute adjustments (inside an aircraft bunker) attachment:motodrone09_challenge1.jpg Task 1 - indoor track red circle attachment:motodrone09_challenge3.jpg Task 1 - takeoff! attachment:motodrone09_challenge2.jpg Ground station software attachment:motodrone09_challenge4.jpg Task 2 - outdoor track